Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699850

RESUMO

Identifying highly stable, cost-effective, platinum-free, and efficient electrocatalysts for the oxygen reduction reaction (ORR) remains a formidable challenge. The ORR is important for advancing fuel cell and zinc-air battery (ZAB) technologies towards cost-efficiency and environmental sustainability. This work presents the utilization of economically viable materials through a straightforward synthesis process, exhibiting the development of efficient Mo2C/Fe3C-NC catalysts ingeniously derived from phosphomolybdic acid (PMA) and iron phthalocyanine (FePc). The results demonstrate that the optimized Mo2C/Fe3C-NC3 catalysts exhibit remarkable electrochemical performance, evidenced by an impressive onset potential of ∼1.0 V versus RHE, a half-wave potential of 0.89 V, and a superior current density of about 6.2 mA cm-2. As for their performance in ZABs, the optimized catalysts reach a peak power density of 142 mW cm-2 at a current density of 200 mA cm-2. This synergy, coupled with the uniform distribution of Mo2C and Fe3C nanoparticles, greatly enhances the active catalytic sites and promotes electrolyte diffusion. Our approach diverges from traditional methods by employing an in situ self-assembled heterostructure of Mo2C/Fe3C on nitrogen-doped carbon tubes, avoiding the conventional high-temperature hydrogen gas reduction process. Beyond serving as feasible alternatives to commercially available Pt/C catalysts, these materials hold promise for large-scale production owing to their affordability and the simplicity of the synthesis technique. Such a breakthrough paves the way towards the realization of sustainable energy technologies and lays the groundwork for further exploration into amplifying the scalability and efficiency of ORR catalysts.

2.
Small ; : e2400779, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546187

RESUMO

The development of an efficient electrocatalyst for HMF oxidation to FDCA has been in the early stages. Herein, the NiNPs/GO-Ni-foam is fabricated as an electrocatalyst for FDCA production. However, the electrocatalytic performance of the untreated NiNPs/GO-Ni-foam is observed with moderate Faradaic efficiency (FE) (73.0%) and FDCA yield (80.2%). By electrochemically treating the NiNPs/GO-Ni-foam in an alkaline solution with positive potential at different treatment durations, the degree of NiOOH on metal surfaces is changed. The distinctive electrocatalytic activity obtained when using the different NiOOH degrees allows to understand the crucial impact of NiOOH species in HMF electrooxidation. Enhancing the portion of the NiOOH phase on the electrocatalyst surface improves electrocatalytic activity in terms of FE and FDCA yield up to 94.8±4.8% and 86.9±4.1%, respectively. Interestingly, as long as the NiOOH portion on the electrocatalyst surface is preserved or regenerated, the electrocatalyst performance can be intact even after several catalytic cycles. The theoretical study via density functional theory (DFT) also agrees with the experimental observations and confirms that the NiOOH phase facilitates the electrochemical transformation of HMF to FDCA through the HMFCA pathway, and the potential limiting step of the overall reaction is the oxidation of FFCA to FDCA.

3.
Nanoscale Adv ; 6(7): 1822-1836, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38545284

RESUMO

This paper is devoted to reviewing a decade of the development of vacuum sputter deposition onto liquid poly(ethylene glycol) (PEG) to prepare metal and alloy nanoparticles (NPs) with a controlled particle growth, size, structure, and composition. Especially, we have discussed the fine structures of alloy NPs obtained in PEG and compared them with those sputtered onto other non-volatile liquids. Finally, we have shared our prospect of applications for the resulting alloy NPs.

4.
ACS Appl Mater Interfaces ; 16(9): 11537-11551, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38361372

RESUMO

The strategy of defect engineering is increasingly recognized for its pivotal role in modulating the electronic structure, thereby significantly improving the electrocatalytic performance of materials. In this study, we present defect-enriched nickel and iron oxides as highly active and cost-effective electrocatalysts, denoted as Ni0.6Fe2.4O4@NC, derived from NiFe-based metal-organic frameworks (MOFs) for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). XANES and EXAFS confirm that the crystals have a distorted structure and metal vacancies. The cation defect-rich Ni0.6Fe2.4O4@NC electrocatalyst exhibits exceptional ORR and OER activities (ΔE = 0.68 V). Mechanistic pathways of electrochemical reactions are studied by DFT calculations. Furthermore, a rechargeable zinc-air battery (RZAB) using the Ni0.6Fe2.4O4@NC catalyst demonstrates a peak power density of 187 mW cm-2 and remarkable long-term cycling stability. The flexible solid-state ZAB using the Ni0.6Fe2.4O4@NC catalyst exhibits a power density of 66 mW cm-2. The proposed structural design strategy allows for the rational design of electronic delocalization of cation defect-rich NiFe spinel ferrite attached to ultrathin N-doped graphitic carbon sheets in order to enhance active site availability and facilitate mass and electron transport.

5.
Langmuir ; 39(24): 8435-8440, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285580

RESUMO

Thiolate-protected molecular noble metal clusters have attracted significant attention due to their unique physicochemical properties, which make them applicable in diverse fields such as catalysis, sensing, and bioimaging. Ligand-exchange reactions are a crucial technique for synthesizing and functionalizing these clusters, as they allow for the introduction of new ligands onto the cluster surface, which can alter their properties. While numerous studies have investigated neutral-to-neutral, neutral-to-anionic, and neutral-to-cationic ligand-exchange reactions, the cationic-to-cationic ligand-exchange reaction has never been reported, making the study of such reactions intriguing. In this study, the cationic ligand-exchange reaction on Au25(4-PyET-CH3+)x(4-PyET)18-x (x ≈ 9) clusters, which contain both neutral and cationic ligands in nearly equivalent amounts, was investigated. Contrary to our expectation that the cationic-to-cationic ligand-exchange reaction would be suppressed due to Coulombic repulsion between the surface cationic ligands and incoming cationic ligands, the originally existing cationic ligand was selectively exchanged. The choice of counterions for cationic ligands played a crucial role in controlling the selectivity of ligand exchange. For instance, bulky and hydrophobic counterions such as PF6- can cause steric hindrance and reduce Coulombic repulsion, which promotes cationic-to-cationic ligand exchange. Conversely, counterions like Cl- can lead to neutral-to-cationic ligand exchange due to reduced steric hindrance and increased Coulombic repulsion between cationic ligands. These findings provide a novel method for tailoring the properties of molecular gold clusters through controlled ligand exchange without requiring the design of thiolate ligands with varying geometrical structures.

6.
Nanoscale ; 15(11): 5519, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36866746

RESUMO

Correction for 'Tailoring the MOF structure via ligand optimization afforded a dandelion flower like CoS/Co-Nx/CoNi/NiS catalyst to enhance the ORR/OER in zinc-air batteries' by Mohan Gopalakrishnan et al., Nanoscale, 2022, 14, 17908-17920, https://doi.org/10.1039/D2NR04933C.

7.
Nanoscale ; 14(48): 17908-17920, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468656

RESUMO

Due to their affordability and good catalytic activity for oxygen reactions, MOF-derived carbon composites containing metal alloys have piqued interest. However, during synthesis, MOFs have the disadvantage of causing significant carbon evaporation, resulting in a reduction of active sites and durability. This study proposes tailoring the molecular structure of MOFs by optimizing bipyridine and flexible 4-aminodiacetic terephthalic acid ligands, which have numerous coordination modes and framework structures, resulting in fascinating architectures. MOF frameworks having optimized N and O units are coordinated with Co and Ni ions to provide MOF precursors that are annealed at 700 °C in argon. The MOF-derived Co9S8/Co-Nx/CoNi/Ni3S2@CNS-4 catalyst exhibits excellent catalytic activity, revealing an ORR half-wave potential of 0.86 V and an overpotential (OER) of 196 mV at 10 mA cm-2, a potential gap of 0.72 V and a Tafel slope of 79 mV dec-1. The proposed strategy allows for the rational design of N-coordinated Co and CoNi alloys attached to ultrathin N, S co-doped graphitic carbon sheets to enhance bifunctional activity and sufficient active sites. Consequently, the zinc-air battery using the synthesized catalyst shows a high peak power density of 206.9 mW cm-2 (Pt/C + RuO2 116.1 mW cm-2), a small polarization voltage of 0.96 V after 370 h at 10 mA cm-2, and an outstanding durability of over 2400 cycles (400 h). The key contributions to the superior performance are the synergetic effects of the CoNi alloys plus the N,S-incorporated carbon skeleton, due to the small charge transfer resistances and enhanced active sites of CoNi, metal-S, and pyridinic N.

8.
ACS Appl Bio Mater ; 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36074396

RESUMO

Injectable fiducial markers are crucial in image-guided radiation therapy (IGRT) due to their minimally invasive operations and improved patient compliance. This study presents the development of a ready-to-use injectable fiducial marker utilizing alginate stabilized-gold nanoparticles (alg-Au NPs) and a body temperature-activated in situ gel-forming system. Gram-scale alg-Au NPs were prepared in an hour by a green microwave-induced plasma-in-liquid process (MWPLP). Sodium alginate was introduced in this process to avoid aggregation between Au NPs, which ensured their stability and injectability. The gelation behavior of alginate with divalent cations and a temperature-dependent release of calcium source (glucono-delta-lactone (GDL) and CaCO3) served as the foundation of the body temperature-activated in situ gel-forming system. The injectable fiducial marker GDL/CaCO3/alg-Au NPs could maintain a liquid state at a low temperature for a higher injectability. After injection, on the other hand, Ca2+ would be released due to the body temperature-activated hydrolysis of GDL and the subsequent reaction with CaCO3, which would initiate the gelation of alginate. The injectable fiducial marker can be therefore delivered via injection and form gel at target site to avoid marker movement or Au NPs leakage after injection. Rheological measurements demonstrate the stability and gelation behavior of GDL/CaCO3/alg-Au NPs at different temperatures. Furthermore, the injectability and imaging ability of GDL/CaCO3/alg-Au NPs were also examined. In summary, ready-to-use injectable fiducial marker GDL/CaCO3/alg-Au NPs were developed via a green and facile method for IGRT.

9.
Nanoscale Res Lett ; 17(1): 65, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852712

RESUMO

Due to their outstanding power density, long cycle life and low cost, supercapacitors have gained much interest. As for supercapacitor electrodes, molybdenum nitrides show promising potential. Molybdenum nitrides, however, are mainly prepared as nanopowders via a chemical route and require binders for the manufacture of electrodes. Such electrodes can impair the performance of supercapacitors. Herein, binder-free chromium (Cr)-doped molybdenum nitride (Mo2N) TFEs having different Cr concentrations are prepared via a reactive co-sputtering technique. The Cr-doped Mo2N films prepared have a cubic phase structure of γ-Mo2N with a minor shift in the (111) plane. While un-doped Mo2N films exhibit a spherical morphology, Cr-doped Mo2N films demonstrate a clear pyramid-like surface morphology. The developed Cr-doped Mo2N films contain 0-7.9 at.% of Cr in Mo2N lattice. A supercapacitor using a Cr-doped Mo2N electrode having the highest concentration of Cr reveals maximum areal capacity of 2780 mC/cm2, which is much higher than that of an un-doped Mo2N electrode (110 mC/cm2). Furthermore, the Cr-doped Mo2N electrode demonstrates excellent cycling stability, achieving ~ 94.6% capacity retention for about 2000 cycles. The reactive co-sputtering proves to be a suitable technique for fabrication of binder-free TFEs for high-performance energy storage device applications.

10.
Chem Commun (Camb) ; 58(56): 7741-7744, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35723415

RESUMO

Eutectic gallium indium (EGaIn) has drawn considerable research interest in potential liquid catalysis. Herein, we report that EGaIn liquid metal acts as a catalyst for the growth of a graphitic carbon layer from ethanol under ultrasonication. High-speed imaging demonstrated the formation of ultrasonic cavitation bubbles at the liquid metal/ethanol interface, which facilitated the pyrolysis of ethanol into graphitic carbon on the liquid metal surface.

11.
Nanoscale ; 14(22): 8012-8022, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35612908

RESUMO

Iron-cobalt (FeCo) oxides dispersed on reduced graphene oxide (rGO) were synthesized from nitrate precursors at loading levels from 10 wt% to 60 wt%. These catalysts were tested in lab-scale zinc-air batteries (ZABs) at a high current density of 100 mA cm-2 of the cathode area for the first time, cycling between 60 min of discharging and 60 min of charging. The optimum loading level for the best ZAB cycling performance was found to be 40 wt%, at which CoFe2O4 and CoO nanocrystals were detected. A discharge capacity of at least 90% was maintained for about 60 cycles with FeCo 40 wt%, demonstrating superior stability over amorphous FeCo oxides with FeCo 10 wt% despite similar performance at electrochemical tests. At a high current density of 100 mA cm-2, OER catalytic activity was found to be the limiting factor in ZAB's cyclability. The discrepancies between the ORR/OER catalytic activities by electrochemical and battery cycling test results highlight the role and importance of rGO in improving electrical conductivity and activation of metal oxide electrocatalysts under high current density conditions. The difference of battery cycling test results from traditional electrochemical test results suggests that electrochemical tests conducted at low current densities may be inadequate in predicting practical battery cycling performance.

12.
ACS Omega ; 7(8): 7414-7420, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252731

RESUMO

Anisotropic growth to form Cu particles of rod and wire shapes has been obtained typically in a complex system that involves both organic capping agents and Cl- ions. However, the sole effect of Cl- ions on the formation of Cu wires has yet to be fully understood, especially in an organic system. This present work determines the effect of Cl- ions on the morphologies of Cu particles in an organic phase without any capping agents. The results revealed that anisotropic Cu rods could be grown with the sole presence of Cl- ions. The rods have the (011) facets as the long axis, the (111) facets as the tip, and the (100) facets as the side surface. By increasing the Cl- ion concentration, more Cu atoms contributed to the formation of Cu rods and the kinetic growth of the length and the diameter of the rods varied. This suggests that Cl- ions have preferential adsorption on the (100) Cu surfaces to promote the anisotropic growth of Cu. Meanwhile, the adsorption of Cl- to the (111) and (100) surfaces at high Cl- concentrations regulates the relative growth of the particle length and diameter.

13.
ACS Appl Bio Mater ; 5(3): 1259-1266, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35175735

RESUMO

Image-guided radiation therapy (IGRT) has emerged as a promising technique for cancer treatment to improve radiation precision and accuracy, thereby reducing the treatment toxicity and optimizing therapeutic efficacy. In IGRT, fiducial markers are required to be inserted near the tumor to get the spatial information of the tumor. Currently used metal fiducial markers with large sizes would be highly invasive; therefore, it is critical to develop minimally invasive alternatives to these markers. In this work, an injectable marker based on Biopex-supported Au NPs with adequate radio-opacity for X-ray visualization was developed. Biopex can function as a substrate for the growth of Au NPs and avoid excessive reaction-induced aggregation and precipitation. The self-curing property of Biopex prevents the leakage and elimination of isolated Au NPs, enabling long-term X-ray observation and radiotherapy. The effect of Biopex amount, gold precursor concentration, and reaction time were evaluated. The visibility of samples prepared by the optimized formula was also examined. The developed Biopex-Au NPs could be injected through a 21 G needle and exhibit great visibility in the X-ray visualization test, showing great potential as a fiducial marker for image-guided radiation therapy.


Assuntos
Nanopartículas Metálicas , Radioterapia Guiada por Imagem , Sulfatos de Condroitina , Marcadores Fiduciais , Ouro/química , Hidroxiapatitas , Nanopartículas Metálicas/uso terapêutico , Radioterapia Guiada por Imagem/métodos , Succinatos
14.
ACS Omega ; 7(7): 6238-6247, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224386

RESUMO

A one-step preparation of alginate-stabilized gold nanoparticles (Au NPs) using the microwave-induced plasma-in-liquid process (MWPLP) was reported. Effects of alginate with various concentrations on the preparation and properties of the synthesized Au NPs, including reaction rate, morphology, size, and optical absorption property, were studied. The introduction of alginate (1) accelerated the reaction rate, (2) prevented aggregation and precipitation due to long time discharge in MWPLP, and (3) provided long-term colloidal stability. An abnormal size change (from large to small) of Au NPs during particle growth, which was opposite to the typical change in bottom-up chemical reduction, was observed and a possible mechanism was proposed based on the dynamical and thermodynamical instability of particles during growth. The strategy of drying and redispersion of Au NPs in alginate solution was also studied. The drying and redispersion process had an imperceptible effect on the Au NPs. As a consequence, this strategy might be an effective technique for the long-term storage of Au NPs and other metal NPs. The alginate-stabilized Au NPs without the addition of toxic reducing or stabilizing agents can be appropriate to biomedical applications.

15.
ACS Meas Sci Au ; 2(6): 542-546, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36785777

RESUMO

Atomic-scale observation by aberration-corrected scanning transmission electron microscopy (STEM) is essential for characterizing supramolecular assemblies with nonperiodic structures. Identifying the relative spatial arrangement in a mixture of molecular species in an assembly is crucial for understanding chemical reaction systems occurring in the assembly. Herein, we report the first direct observation of supramolecular assemblies comprising anionic clay mineral nanosheets and two types of cationic porphyrin complexes with Pt and Pd atom markers by annular dark-field STEM, enabling the simultaneous imaging of well-mixed spatial molecular distributions. The results expand the possibility of applying electron microscopy to self-assembly structures constructed via weak supramolecular interactions on relatively thick nanosheet materials and on one- to few-atom-thick graphene analogues, which will provide important guidelines for future material design.

16.
J Phys Chem Lett ; 12(49): 11761-11765, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34854673

RESUMO

Surface chemical reactions on atomically precise metal clusters have considerable attention for opening a new platform for cluster functionalization. In this study, basic Au25(4-PyET)18 (4-PyET = -SCH2CH2Py; Py = pyridyl) clusters were successfully transformed into cationized Au25(4-PyET-CH3+)x(4-PyET)18-x clusters, without altering their Au25 cores, through the Menshutkin SN2 reaction of their surface Py moieties. This study offers not only a simple cationization method but also a protocol for modifying the surface functionalities of molecular metal clusters via a synthetic reaction.

17.
Soft Matter ; 18(1): 19-47, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34901989

RESUMO

Sputter deposition onto a low volatile liquid matrix is a recently developed green synthesis method for metal/metal oxide nanoparticles (NPs). In this review, we introduce the synthesis method and highlight its unique features emerging from the combination of the sputter deposition and the ability of the liquid matrix to regulate particle growth. Then, manipulating the synthesis parameters to control the particle size, composition, morphology, and crystal structure of NPs is presented. Subsequently, we evaluate the key experimental factors governing the particle characteristics and the formation of monometallic and alloy NPs to provide overall directions and insights into the preparation of NPs with desired properties. Following that, the current understanding of the growth and formation mechanism of sputtered particles in liquid media, in particular, ionic liquids and liquid polymers, during and after sputtering is emphasized. Finally, we discuss the challenges that remain and share our perspectives on the future prospects of the synthesis method and the obtained NPs.

18.
Langmuir ; 37(19): 6096-6105, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33960790

RESUMO

Pt/Ag solid solution alloy nanoparticles (NPs) with mean size below 3 nm were obtained with composition in miscibility gaps by cosputtering onto liquid polyethylene glycol (PEG, MW = 600). Adjusting the sputtering currents from 10 to 50 mA did not influence the particle sizes obviously but caused a substantial difference in the composition and distributions of Pt/Ag NPs. This is different from sputtered Pt/Au NPs where particle size is correlated with composition. For a pair of sputtering currents, the formed Pt/Ag alloy NPs have a range of compositions. The normal distribution with Pt of 60.2 ± 16.2 at % is observed for the Pt/Ag sample with a nominal Pt content of 55.9 at %, whereas Pt-rich (85.1 ± 14.0 at % Pt) and Ag-rich (19.8 ± 12.2 at % Pt) Pt/Ag samples with nominal Pt contents of 90.9 and 11.9 at % contain more pure Pt and pure Ag NPs, respectively. Different from NPs obtained in PEG, the sputtered NPs on TEM grids had more uniform composition for a longer sputtering time along with a significant increase of particle sizes. This reveals that PEG hindered the combination of NPs and clusters, resulting in small particle sizes even for long time sputtering and broader composition distributions. Thus, the samples obtained in PEG have the compositions mainly determined by the random atom combination in the vacuum chamber and possibly in initial landing of atom/clusters on the PEG surface.

19.
Nanoscale Adv ; 3(16): 4626-4645, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134315

RESUMO

An overview of recent literature on the micro- and nano-encapsulation of metallic phase-change materials (PCMs) is presented in this review to facilitate an understanding of the basic knowledge, selection criteria, and classification of commonly used PCMs for thermal energy storage (TES). Metals and alloys with high thermal conductivity can be used as PCMs for rapid heat storage in compact systems owing to their high volumetric TES density. The emerging application of metal PCMs in different fields such as solar thermal energy management, smart wearable devices with thermal comfort control, and cooling of electronic devices call for the need of micro- and nano-TES particles, which can be synthesised in different forms to satisfy specific requirements. As metals are easily oxidised, especially at the micro- and nano-level, encapsulation of metal-based PCM particles is important for sustainable use at high operating temperature in ambient conditions. Recent studies focusing on the encapsulation of metallic PCMs at the micro- and nano-level have been reviewed and classified in terms of the melting point of metal/alloy PCMs used and types of encapsulation materials, such as oxides, polymers, carbon, and metals. The current review is expected to provide an outlook on novel metal and alloy PCMs with function-directed structures and superior TES properties for a broad range of applications.

20.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023274

RESUMO

Zinc-air batteries (ZABs) offer high specific energy and low-cost production. However, rechargeable ZABs suffer from a limited cycle life. This paper reports that potassium persulfate (KPS) additive in an alkaline electrolyte can effectively enhance the performance and electrochemical characteristics of rechargeable zinc-air flow batteries (ZAFBs). Introducing redox additives into electrolytes is an effective approach to promote battery performance. With the addition of 450 ppm KPS, remarkable improvement in anodic currents corresponding to zinc (Zn) dissolution and limited passivation of the Zn surface is observed, thus indicating its strong effect on the redox reaction of Zn. Besides, the addition of 450 ppm KPS reduces the corrosion rate of Zn, enhances surface reactions and decreases the solution resistance. However, excess KPS (900 and 1350 ppm) has a negative effect on rechargeable ZAFBs, which leads to a shorter cycle life and poor cyclability. The rechargeable ZAFB, using 450 ppm KPS, exhibits a highly stable charge/discharge voltage for 800 cycles. Overall, KPS demonstrates great promise for the enhancement of the charge/discharge performance of rechargeable ZABs.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Compostos de Potássio/química , Sulfatos/química , Zinco/química , Ar , Eletrólitos/farmacologia , Compostos de Potássio/farmacologia , Sulfatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...